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Exact Principal Mode Field for a Lossy

Coaxial Line
William C. Daywitt

Abstract —Exact field equations for a lossy coaxial transmis-

sion lime with an infinite outer conductor are presented. The

corresponding determinantal equation is solved to obtain an
exact propagation constant from which errors in the usual
microwave approximation and an alternative full frequency
ratige :approximation are calculated. The calculations show that

the microwave approximation, although containing a large rela-
tive error at the lower frequencies, is still useful in practical

applications.

Keywords—coaxial transmission linq Maxwell’s equations;
principal motlq propagation constant telegrapher equation.

I. lNTRODUCTIQN

A IN exact field solution to Maxwell’s equations for a

coaxial transmission line has been in existence since

at least 1941 [1], but has gone tmrecognized or at least

unexploited since that time. This is probably because in

1941 the means of calculation available today were nonex-

istent so the exact solution was inadvertently buried in the

need to approximate. In any case, this solution has been

recently developed and is presented in this paper.

As six-port and automatic network analyzers have be-

come more accurate and sensitive and are being utilized

at lower and lower frequencies, increasing emphasis is

placed upon accuracy of the transmission line standards

used to characterize or calibrate these systems. In particu~

lar, accurate calculation of the line’s propagation constant

acquires added importance. The approximation used at

present [1], [2] to calculate this constant, however, needs

to be reexamined below the microwave frequency region

for which it was derived since its accuracy could only be

estimated in the past from Russell’s equations [3], which

themselves are approximate. The work described here

was pursued in part to correct this situation and repre-

sents the first real check on the microwave approxima-

tion; it also suggests an alternative approximation to the

propagation constant that is more accurate and that is

applicable over the full frequency range of the line.

Russell’s 1909 paper [3], which was used [2] to estimate

the accuracy of the microwave approximation to the prop-

agation constant and the distributed line parameters, is

interesting in its own right. It discusses early theoretical
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developments concerning the transmission of high-

frequency currents down “concentric mains” (involving

the efforts of Maxwell, Heaviside, and Lord Rayleigh)

and contributes significantly to that development in addi-

tion to deriving approximations to Kelvin’s “her,” “bei,”

“ker,” and “kei” functions that are standard today, TIIe

approximations in Russell’s solution appear in his equa-

tions (59)–(61), where Faraday’s, Ohm’s, and an integral

form of Ampere’s law (not the exact version containing

the displacement current) are used in addition to the

ap~roximation that the axial electric field is constant

across the conductors.

The establishment of impedance standards for inte-

grated circuit applications in stripline and microstrilp

transmission lines is considerably more difficult than simi -

lar endeavors for coaxial lines such as the one described

here. Indeed, even an accurate description of the wave

propagation on these miniature lines is complex, and it is

useful to have at least one exact transmission line solution

against which to compare results. The fields and results to

be described below constitute one of these exact soh.l-

tions.

The exact coaxial line solution is presented in the next

section, preceding which is a short review of the pertinent

theory that is included to collect the equatjons in one

place and because of the importance of air line standards

to precision network analyzer calibrations. A slight change

has been made in the derivation to avoid divergences

present in the usual treatment [1] as the frequency or thle

conductor resistivity approaches zero.

Boundary conditions requiring continuity of the fields

tangential to the conducting surfaces are applied in Sec-

tion HI to derive the determinantal equatim, and a

simple iteration scheme to quickly find the rool (which is

used to calculate the propagation constant) is presented.

Approximations are developed in Section IV, where an

expression for the root of the determinantal equation is

presented that is more accurate and applies over a wider

frequency range than the microwave version [11, [21
presently in use. Full range, first-order fields are also

presented in that section.

A number of rewlts are discussed in Section V, inchld-

ing field graphs within and without the conductors; a

comparison of the conductor skin depths with the planar

approximation; graphs showing the accuracy of the ap-

proximations, in particular the accuracy of the propa&a-
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Fig. 1. Crcks-sectional view of a coaxial transmission line with an
infinite outer conductor.

tion constant calculations; a comparison of the inner and

outer conductor currents; and, finally, graphs of the wave

impedance and phase velocity versus frequency. Conclu-

sions drawn from the results are presented in Section VI.

II. EXACT FIELDS

A derivation of the exact electric and magnetic fields

propagating along the axis of a coaxial line is briefly

reviewed in this section. The line (Fig. 1) is assumed to be

homogeneous and isotropic with a uniform cross section

consisting of a center conductor (region 1), a dielectric

region between the conductors (region 2), and an outer

conductor (region 3). The magnetic permeabilities, elec-

tric permittivities, and conductivities are denoted by Ki,

ei, and q in the various regitms (i = 1,2,3) and ~z = O in

the dielectric region 2. The wavenumbers are denoted by

ki, and the hi are parameters to be described later. The

coordinate system is right-handed with the directions

(?, ~, 2) shown in the figure, the z direction coming out of
the paper toward the reader. The conductor resistivities

are denoted by pi ( = I/ui) and will be used instead of

the conductivities when convenient.

The three regions are assumed to be source free so that

Maxwell’s equations in S1 units take the form

VxE=–jtipiH V.B=O (1)

tiX~=(Oi+-j@Ei)~ V.E=O (2)

where the harmonic variation ejwf is assumed. Performing

the standard vector operations [1] on (1) and (2) leads to

the Helmholtz equation

(3)

that must be satisfied by the E and H fields.

The Laplacian in (3) is separable into transverse and

longitudina~ components, corresponding respectively to

the f and ~ and to the ,2 directions in cylindrical coordi-

nates. Further&ore, (3) implies that each cylindrical com-

ponent of both E and H must satisfy this Helmholtz

equation and have the form [4]

V(r, @,z)=R(r)@(@)e”yz (4)

where y is a separation constant. Inserting (4) into (3)

after expressing the Laplacian in cylindrical coordinates

produces an equation that is separable into the two equa-

tions

Y’1l’’(r )+rl?’( r)+(h:r z-rzz)ll(r)=o (5)

and

@“(+) = -~2Q’(d). (6)

The separation constant n is chosen to be O since th~

principal mode magnet field does not vary in the @

direction. The hi in (5) is another separation constant,

given by

h:=k:+y2 (7)

where the complex wavenumber, ki, is

k: = ti’pi~i – jwplvi. (8)

Solutions to (5) that are of interest are the Bessel func-

tions of the first, second, and third kinds; .l.(hr), N~(hr),

and l+~’)(lzr) (Hankel function). The index n will take on

the values O and 1, the 1 appearing because of the

derivatives in (5) even though only n = O is needed in (6)

to satisfy the symmetry requirement of the magnetic field

in the ~ direction.

The preceding equations are applied to each of the

three coaxial regions using a different hi (hl, h2, or lz3)

and ki (kl, k2, or k3) for each region. Various combina-

tions of the Bessel functions are used to satisfy boundary

conditions and generate finite fields at r = O and r = m,

leading to the following three sets of fields (the common

factor exp ( jot – yz) has been suppressed from the equa-

tions):

Region 1 (r< a)

[1

E, Yl(hlr), r<a

E, =C1 h.ly-lYO(hlr), r <a (9)

H+ Y1~l(/zlr), r<a.

Region 2(a < r < b, h E hl)

(/

E, Zl(hr], a<r<b

E= =C2 hy-lZO(hr), a<r<b (10)
H+ Y2Z1(hr), a<r <b.

Region 3(b < r)

/(

E. H~2)(h~r), b<r

E= = CB h~y-1HJ2)(h3r), b < r (11)

H+ Y~H~2)(h~r), b<r.

The constants Cl, Cz, and C3 have the units of volts per

meter but are for the present arbitraw. The constants h ~
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and h:, are calculated from

hi= (k? + ~2)1/2

where k ~, k2 (with Uz = O), and k~ are given

k~ ~ (~2Pi~t – j~wia,)’”

with i = 1,2,3. The wave admittances are

jkf
~=—

~PLY

by

and the propagation constant is calculated from

y = (h’ - k~)l/2 = jk2(l - h2/k~)’/2

(12)

(13)

(14)

(15)

The quantity h is obtained from the determinantal equa-

tion C!8) discussed in the next section.

The Z. (n= O,1) functions in (10) are defined by the

equation

Z~(hr) = GJ~( hr) + hbN~(hr) (16)

where G is a constant determined by the boundary condi-

tions. This last definition was chosen in place of the usual

definition, Z.= J.+ GN. [1], to avoid divergences in both

G and N. as h approaches O owing to the frequency or

the conductor losses (resistivities) approaching O. Both

terms in (16) are well behaved in these limits, the first

term i~pproaching O and the second term approaching O or

– 2b,/wr depending on whether n = O or n =1.

Each set of fields given by (9), (10), and (11) satisfies

Maxwell’s equations identically, as can be seen by substi-

tution into (1) and (2), using the Bessel function recursion

relations to reduce the resulting terms containing n = 2 to

comb inations of terms containing only n = O or n = 1.

The boundary conditions require the continuity of E=
and ~Y@at r = a, b, and yield the following field expres-

sions which are obtained from the fields in (9)–(11) by

solving the boundary conditions for Cl and C3 in terms of

C2 and using (14) for the wave admittances:

Region 1:

wk; Jl(hlr)
E,= Cz ~Z1(ha) e–~z (17)

/J2kl Jl(hla)

JO(hlr)
E,= C2~ZO(ha) ~–Yz

JO(hla)
(18)

H4=Y1E,. (19)

Region 2:

E,= CzZ1(hr)e-7= (20)

E== C2LZO(hr)e”yz (21)
Y

H4=YZE,. (22)
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Region 3:

/-@; ~f2)(h3~) e_,z
E,= C2 ~.ZI(hb) Hf)(h3b) (23)’

/+kB

HA2)(h3r) e_7z
E== C2;ZO(hb)

H~2)(h3b)
(24)I

H+= YBE,. (25)

Magnetic losses within the conductors and dielectric losses

between the conductors can be included by using a com-

plex WI, p3, and k2.
The field expressions (17)-(25) formally satisfy both

Maxwell’s equations and the boundary conditions exactly,

but the value of h must still be determined in order to

calculate the propagation consta~t y and complex fields.

This is accomplished in the next section.

III. DETERMINANTAL EQUATION

Calculation of the constant h is necessary to utilize the

field equations of the last section. It is obtained, like the

C, constants, by applying boundary conditions at r = a

and r = b. The resulting equation from which h is determ-

ined and a simple means of solving that equation am

described in this section.

Two expressions containing the constants Cl and C2
are obtained by requiring continuity in Ez and H+ at the

boundary r = a (see (9)–(11)). Eliminating these constants

between the two expressions yields

ZO(ha) wlk~hl.lO(hla)
— .
Zl(ha) w’k?~l(hla) “

A similar equation is obtained by requiring

atr=b:

ZO(hb) ~~k;h3HJ2)(h3b)

Zl(hb) = ~zk;hHf2)(h3b) “

(26)

continuity

(27)

Both (26) and (27) contain the constant G implicitly in

their respective Z.’s, each yielding an equation for G

when the 2.’s are replaced by their equivalents in (16):

G = w;lk~hbNl(ha) –(wF1k2\h1)h2bR1( h1a)NO(ha)

(wC’k?/h,)hR,(h, a) J,(ha) -pjlk~J1(ha) -

p;lk;hbN1(hb) – (~; lk~/h3)h2bR3(h3 b) NO(hb)
——

(w; ’k;/h3)hR3(h3~) Jo(hb) -p;lk;J1(hb) ‘-

(28)

where

Jl(hla) H~2)(h3b)

‘l(hla) = Jo(~la)
R~(hab) = H$J(h3b) ‘

(2!))

The last equality in (28) is the determinantal equation

from which the root h is extracted. There are actually an

infinity of roots: the root with magnitude close to O which

is the desired h of the principal mode; and an infinite

number of other roots with nonzero magnitudes that
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belong to the symmetric TM waveguide modes [11, [51,

which are of no interest in the present work.

A simple and rapidly convergent iteration scheme for

finding the root h of (28) can be obtained with the

following seven steps:

1)

2)

3)

4)

5)

6)

7)

make an initial estimate for h using (32) in (35);

calculate h ~ and h q from the results of step 1 and

(12);

calculate Rl(hla) and R3(h3b) from the results of

step 2 and (29);

calculate the right and left sides of the second

equality in (28) from the results in steps 1, 2, and 3;

calculate the difference 8G between the calcula-

tions in step 4 and the correction to h using

[(b k: 1

)1

–1
rr2iG 1

ah= ~ln–+— —–—-
h2 klaR1 kBbR,~

; (30)
a

add the correction bh to the h estimated in step 1;

finally, iterate steps 2 through 6 until the desired

accuracy in h is achieved. -

Three iterations are sufficient to produce an h accurate

to approximately 14 significant figures for the numerical

example in Section V. The formula in (30) was obtained

by differentiating the difference between the two sides of

the last equation in (31) with respect to h (note that the

logarithm of h cancels when taking the difference).

Once h is found, hl and h~ can be calculated from (12)

after the propagation constant y is calculated from (15).

IV. APPROXIMATIONS

The exact expressions found in the previous two sec-

tions are inconvenient to use in many practical applica-

tions because of the effort and time required for their

calculation, so accurate approximations are often neces-

sary. Some of the more important approximations are

presented in this section.

The following two approximations (($) for G can be

obtained by dropping the k; terms in the denominators

of (28):

2hb

(
6=— ln-&–

w~k:

w p2k1h2aR1 )

(2hb 2
–— ln—–

~Bk;—
T chb pzkBh2bR3 )

where c E exp(0.5772156649 ”.” ) and 0.57721:56649
Euler’s constant; where

RI= Rl(kla)

and where the following

R3 s R~(k3b)

approximations have been

(31)

. . . is

(32)

made

for small Z( - hr):

Jo(z) =l–z2/4

.lI(z) = 2/2 (33)

After making the substitutions (32)-(34) it is necessary to

examine the magnitude of each of the resulting terms,

discarding those which are insignificant compared with

the rest, to arrive at (31). Equation (31) corresponds to

Stratton’s equation (39) on page 551 of [1].

Solving (31) for h yields the following approximation ~:

$2 PI /klaR1 – p3/k3bRB

@=
(35)

wzln(b/a)

which can be substituted back into (31) for h to obtain ~.

This approximation will apply over the full frequency

range of the transmission line and is Stratton’s equation

(40) on page 552 of [11 (Stratton’s A corresponds to the h
used in the present paper). It is seen to contain kl and k~

explicitly and implicitly via the functions RI and R3, the

latter preventing (35) from being a simple proportion in

1/ kl and 1/ k3. In contrast to (35), substituting

R1~–j R3&j (36)

leads to the usual, microwave approximation hO:

where if k ~= k3, then h ~ is proportional to the reciprocal

of ki or the normalized surface impedance of the conduc-

tors (see (A5)). This approximation gives good accuracy

only at the upper, microwave end of the line’s frequency

range. This is the solution that has survived since 1941

and that is in common usage today [1]. The positive

square roots in (35) and (37) are taken when t? and hO are

required.

Equation (31) is a “small h“ approximation to G

whereas the corresponding microwave expression is a

first-order approximation in the metallic surface

impedance of the conductors, approximating R ~ and R3

(36) in addition to the approximations (33) and (34). This
distinction is what makes the newer approximations full

frequency range approximations, i.e., usable and accurate

from O Hz to the upper usable frequency of the transmis-

sion line (e.g. 18 GHz for the 7 mm, 50 Q line).

The approximate full range propagation constant ~ is

obtained by using (35) in the second expression of (15):

-) = jk2(l– ~2/2k~). (38)

This result permits the line loss and phase shift to be

accurately calculated over the full frequency range of the

line once RI and R3 are determined (see the Appendix).
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Region 2 Fields

With C2 = – T/2, the following approximations to

(20)-(2!2) can be derived:

b(l+re,)
E,= e-?z

r
(39)

2b

()

~2r2

Ez=— re, — — e–+z (40)
3’(IN2 4

and

‘~=y++%+re)e-”’41)
where

yoo = jk2

and

k2
Y20 “ — (44)

tipz

6y 8Y2 t!2—=—— ——. —
2k~ “

(45)
?’00 Y20

The fields given by (39)–(41) are complete solutions to

first order in the squared quantity h2 in the sense that, if

substituted into Maxwell’s equations (1) and (2) with the

resulfi reduced to first order, they satisfy those equations

identically. They are related to the corresponding equa-

tions in [5], which are complete microwave solutions to

first cinder in the surface impedance. The significant dif-

ference is the appearance of RI and R~ in place of – j

and j in the earlier definition of re, in [5].

V. NUMERICAL RESULTS

The theoretical results of the previous three sections

are illustrated in this section by numerical examples cal-

culated for a 7 mm, 50 Q line. The line is assumed to

have a resistivity of 2 @. cm, corresponding to equal

inner and outer conductor conductivities (ml, crJ of 5 X 107

S/m, a value that is roughly representative of copper,

silver, and gold. The other constitutive parameters that

were used for the calculations are U2 = O, K ~= 1.L2= p~ =

Ko, and e] = e2 = Cq= e,. Results for other line sizes are

similar to the ones shown below.

A. Ilelds, h, Skin Depths

The magnetic field described by (19), (22), and (25) is
plotttd in Fig. 2 for various frequencies as a function of

the I adius r. The magnitude is normalized by its maxi-

mum value at r = a and the radius by the inner conductor

radius a. The fields between r = a and r = b at the

various frequencies differ a small amount because of

conductor loss, but the vertical scale of the graph is too

131;’

1.0, A 1 1

H+(r)

H+(a)

“o 1 bla 3.4

rla

Fig. 2. Graph of the normalized magnetic field as a function of the
normalized radius for various frequencies,

/_-l Hz

Ez(r)

Ez(a)

rla

Fig. 3. Graph of the normalized longitudinal electric field as a func-
tion of the normalized radius for various frequencies.

coarse to show this effect. The 1 Hz line is close to the

direct current case, exhibiting a linear falloff in the center

conductor and a 1/r falloff in the outer conductor. Tbe

dashed levels at 1/e and 0.434/e will be used later in

discussing the skin depth.
Fig. 3 is a graph of the longitudinal electric field (E,,)

magnitude as a function of r for various frequencies. It is

interesting to note that the magnitude does not vanish

between the conductors, a feature that is evident in the

approximate equation (40) also. The local minima, how-

ever, are seen to approach O at r ~ 1.79 (a value easily
derived from (40)) as the frequency is increased.

Fig. 4 is a graph of the phase angle of E= between the

conductors. The phase remains relatively constant with
frequency until a transition region around 1.79 is reached,

at which point it abruptly changes by approximately 180°.

This phase reversal is sufficient to ensure that there is a

positive average Poynting flux into the conductors at both

r = a and r = b, accounting for the inner and outer con-

ductor losses.
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-a
‘UN

-e-

0°

-90° –

-180° I
a 1.79 b

r

Fig. 4. Graph of the phaseof the normalized longitudinal electric field
asa function of the normalized radius for various frequencies.

TABLE I
CONVERGENCE OF THE PARAMETER h AT 18 GHz

Re(h) Ire(h)

0.0297441614416505 0.0718037438397921

0.0297448538545143 0.0718040306557353

0.0297448539891355 0.0718040305999745

0.0297448539891461 0.0718040305999490

0.0297448539891461 0.0718040305999490

Calculated using hl = kl and h3 = k3.

.001 I 1111111I 1111111I 1111111I 1111111I 1111111I 11111
1 Hz 1 KHz 1MHz

Frequency

Fig. 5. Graph of the skin depths as a function of frequency.

Table I illustrates the rapidity with which the iteration

scheme for finding the root h of the determinantal equa-

tion discussed in Section 111 converges. The real and
imaginary parts of h shown in the first row are the

equation (35) estimates. The convergence is seen to be 15

significant figures in three iterations.

The skin depth is defined as that distance into the
conductors at which the magnitudes of H+ or E, fall to

1/e (see the dashed levels in Fig. 2) of their respective

values at the surface of the conductors. It is generally

different for the two conductors, but this difference is not

significant in the microwave frequency region of the line.

Fig. 5 shows the skin depth as a function of frequency and

includes the usual microwave or planar approximation [6]

in addition to the inner and outer conductor skin depths.

10

IRII

0.1
1
L\Ill

10

;dMlcrowave” Regcon+
/R3/

]R~l i
1111I Hllll7Rlm.uM IHlllli I Ill II I11111111I /111/1/IIll Uu 1.0

Hz 1 KHz 1 MHz 1 GHz

Frequency

Fig. 6. Graph of the magnitude of RI and R~ as a function of

frequency.

90

-50 –

– 80

-60 –

– 70
+’Microwave” Region +

-70 –

– 60

-80 –

-90 –

I 1111111IUllll I1111111IHlllllI 1111111I11111111I HIMI1111111IHllll Iulll
1Hz 1 KHz 1 MHz 1 GHz

Frequency

Fig. 7. Graph of the phase of RI and Rq as a function of frequency.

The outer conductor skin depth is generally less than the

planar approximation because the fields are spreading out

as r increases so it requires a shorter distance for the I/e

falloff to occur. An opposite effect holds for the inner

conductor until a crossover at approximately 7 kHz. The

crossover and the fact that both inner and outer conduc-

tor skin depths become constant as the frequency de-

creases can be seen by examining Fig. 2, an exercise left

to the reader.

B. Approximations

The microwave and full range approximations differ by

the R ~~ – j and RJ = j approximations used in deriving

the former. Figs. 6 and 7 are graphs of the magnitudes

and angles of RI and RB as a function of frequency. They

show that the magnitudes begin to diverge from their

microwave approximations at about 1 MHz and the angles

begin to diverge somewhere between 1 and 10 MHz.

Thus, for a 7 mm line the microwave approximations start

to fail as the frequency drops below about 1 MHz. Using

this 1 MHz cutoff point for the argument of (A6) leads to
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10-’~ ,..,.. 3,.,
10-*~

r,.....

10-3:

10-4: ....”

lo-s~

lo-9
1Hz 1KHz 1 MHz 1 GHz

Frequency

Graph of -y and the errors in j and YO as a function of
frequency.

the rule-of-thumb relation j’= (0.15/ a)z (a h cm and ~

in MHz) as the point where failure begins for any line of

inner conductor radius a. For example, a 3.5 mm line

starts at 4 MHz.
Fig. 8 shows the errors using the microwave (7.) and

full range ($) approximations to the line loss per unit

length and the phase angle per unit length as a function

of frequency. The line IOSSerrors, 8.68 (Re I’O – Re~) and

8.68 (Re + – Rey), are in units of dB/cm; and the angle

errors, Im Y. – Im y and Im ? – Im Y, are in units Of de-

grees/cm. The errors in the full range approximations are

multiplied by a factor of 105 to bring them up onto the

scale of the graph. The absolute loss and angle calculated

from the exact y are also shown for comparison. The

sharp dip in the -yOcurve is due to a change of sign in that

error. The errors at 18 GHz are 6.2X 10-7 dB/cm and

8.2 x10-11 deg/cm for Y. and 1.3x 10-7 dB/cm and

3.8 X 1.0-12 deg/cm for ~. It is clear from the graph that

the full range errors sharply decrease as the frequency

decreases, while the microwave errors become increas-

ingly significant.

The dotted -y curves in Fig. 8 also show how the real

and imaginary parts of the propagation constant vary in

the limits of high and low frequencies. The curves are

linear in these limits, indicating a power law dependence

with frequency for both real and imaginary components.
In the high-frequency limit the phase angle varies linearly

with frequency while the loss component varies as the

square root of the frequency. In the low-frequency limit

both (components vary as the square root of the frequency.

These results can be compared with [7, fig. 5.19] and

explain how both a and ~ approach zero in that figure.

Tha error in the full range approximations of the fields

in region 2 is greatest at the highest usable line frequency.

Table II shows a comparison between the exact and

approximate field values for a radius of 1.5a and a fre-

quency of 18 GHz. (The magnitudes have arbitrary units

and the phases are in units of degrees, while the magni-

tude error is a relative error and the phase error has the

units of degrees.) The errors decrease rapidly as the

frequency decreases.

C. Conductor Currents

It proves interesting to calculate the total conductor

currents since we are now in possession of the exac~

fields. The first equation in (2) takes the form

J= VXH–jueE (46)

when aE is repiaced by the current density within the

conductors. Using (46) and the Bessel function recursion

relations, it is straightforward to show that the currents in

the center and outer Conductors are

I,= ~2T~’J” dS ,

ha
—Zo(ha)l?l(hla) (4’7)’= 2TaH4(a) –2~jtielyhl

and

hb
= –2rbH+(b) +2mjcoe~ —Zo(hb)R3(hqb) (48)

yh~

respectively. Simpler expressions for the currents can be

obtained by performing the integrations again with J = all

in place of (46), leading to

2~am1Ez(a)Rl(hla)
11=

hl
(49:)

and

2mbu#Z(b)Rs(hsb)
Ij=–

hj
(50)

which can be used to simplify the second terms of (47)

and (48). Inserting (49) into (47) for R 1/ h 1 and (50) into

(48) for R3 /h~ gives

and

Equation (52) becomes

13 bH4(b)

~’– aH4(a)
(53)

for similar inner and outer conductors where El= ●a and

cll=u~.

The effect of the displacement current (the denomina-

tors in (51)) on the total conductor current iS tO slightly

decrease the magnitude of their magnetically (H field)

induced components (the numerators of (51)) and to

retard their phases. The ratio in (52) shows that the
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TABLE II

ACCURACY OF THE FIRST ORDER FULL RANGE FIELDS AT r/a = 1.5 FOR 18 GHz

Magnitude Phase

Masmitude Phase Error Error

Exact E, 9.77194E-1 – 179.996

Approx E, 9.77194E-1 – 179.996 1.3E-12 3.7E-7

Exact E= 6.28027E-5 – 134.998

Approx E= e.~gI)(jxE-S – 135.001 5.8E-5 –3.4E-3
Exact H@ 2.59J49E-3 -179.987

Approx H+ 2.59439E-3 – 179.987 9.8E-12 5.3 E-6

Calculated using /zl = /cl and hg = k~.

x
—

I

-

2 –

%%

1 –

0
-1 1.79 bla

rla

Fig. 9. Graph of the deviation from unity of the magnitude of the
normalized magnetic field as a function of frequency.

TABLE III

THE RATIO 111\l~l AT VARIOUS FREQUENCIES

Frequency II, /131

18 GHz 1.00001137475840

10 GHz 1.00000471012008

1 GHz 1.00000014894653

100 MHz 1.00000000471004

1 MHz 1.00000000000470

1 kHz 1.00000000000000

Calculated using h, = k,

currents are not in general equal; this is true even when

the conductors are made of identical materials since the

magnitude of the ratio in (53) is still not unity because of

conductor losses. In the case of vanishingly small losses

(P= O or a = ~), however, both sets of equations, (52) and

(53), result in IS= – Il.
Fig. 9 illustrates how the magnitude of the field ratio in

(53) diverges from unity. This variation is due exclusively
to conductor loss since the conductors are assumed to be

constructed of the same material for the calculation. The

magnitude of the ratio in (53) corresponds to the circled

points at the right in the figure for the various frequencies

indicated. Examination of these points reveals that the

ratio is equal to 1 to within 12 parts per million (ppm) at

18 GHz, 5 ppm at 10 GHz, and 0.5 ppm at 2 GHz,

showing that the current ratio rapidly approaches unity as

the frequency decreases. Table 111 also shows this effect.

‘:=:
1Hz 1kHz 1MHz

Frequency

Fig. 10. Graph of the magnitude and phase of the wave impedance
between the conductors as a function of frequency.

D. Wave Impedance, Phase Velocity

The wave impedance between the conductors is ob-

tained by reciprocating (14) with i = 2:

6J/u2’y @p2(l– ir\k; )l’2
Z2=—=

jk~ k2

= (P2/f=2)1’2(1- h2/k~)l’2 (54)

where (15) has been used to obtain the second expression.

Fig. 10 is a graph of the magnitude and phase of this

impedance. lt is interesting to note that the magnitude is

not equal to the free-space impedance (377 Q) at all

frequencies, decreasing from a value of approximately

20000 0 at 1 Hz to the free-space value between 1 kHz

and 1 MHz. Equally interesting is the phase of 22. The

magnitude continues to increase as ~– 1/2 as the fre-

quency decreases while the phase levels out at a negative

45°. The increase in magnitude is due to the fact that the

magnitude of the radial electric field remains constant

with frequency while the magnetic field magnitude falls

off as ~lj2.

The variation with frequency seen in Fig. 10 vanishes as

it should when the line loss disappears, the remaining

constant value being the free-space impedance ~

with zero phase.
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Fig. 11 is a graph of the phase velocity

w

‘= Ire(y)
(55)

of the principal wave as a function of fre~uency. The ~ 1/2

falloff disappears as the line loss vanishes.

W. CONCLUSIONS

An exact solution to Maxwell’s equations describing the

propagation of the principal mode in a 10SSY coaxial

transmission line has been presented along with a scheme

for finding the principal root h of the determinantal

equation and the exact propagation constant y.

Being able to calculate the exact y provides the first

real check on the accuracy of the microwave and full

range approximations to the propagation constant. The $

curves in fig. 8 show that the full range approximation is

highly accurate over the entire usable frequency range of

the line while the microwave approximation suffers a

large relative” error at frequencies below about 1 MHz. It

should be noted, however, that the yO loss and angle

error curves show absolute errors less tlian 2 X 10-6

dB/cm and 10-6 deg/cm respectively at these lower

frequencies, values that may be sufficiently small for most

practical purposes even though the relative errors are

large.

Approximate expressions for the fields between the

conductors were presented that satisfy Maxwell’s equa-

tions to first order in h2. The errors in these expressions

are shown in Table 11.

It is often assumed that the principal mode wave

impedance for the fields between the conductors is equal

to the free-space value ~. Fig. 10 shows that this

assumption is significantly in error below approximately 1

MHz when the line @ 10SSY.

APPENDIX

APPROXIMATIONS FOR Rl(hla) AND f13(h3b),

SURFACE IMPEDANCE

The approximations (i= 1, 3, and r = a, b)

Ri(hir) ~ Ri(k~r) (Al)

are sufficiently accurate to be used without concern, and

make calculations like (37) easier because the right side of

(Al) does not depend on the solution h of the determi-
nant al equation (28). The corresponding error from re-

placing hi with ki will be discussed first and then the

surfa~ce impedance.

From (12),

(A2)

and calculations show (see Fig. 12) that the second factor

on tlhe right is equal to 1 to better than six parts in 109.

Thus, for practical purposes,

hi=ki. (A3)

al
u)

2
L

102 ~ 11~11111I 1111]111I I~]1111I 11111111I 1111~~11I 1111111I I1111111I 11111111I I111111

10 .

—.

,.-1 I I1111111I I1111111I I111111I 11111111I 11111111I 1111111I I1111111I 11111111I I111111I IU!Jlu
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Fig. 11. Graph of the phase velocity as a function of frequency.
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1 Hz 1 kHz 1 MHz 1 G~z
J

Frequency

Fig. 12. Graph of y2/2k~ as a function of frequency.

From (13),

kt = (OWpJ1/2(1 + ~2e;/o~)”4

[( 1
“ exp – j ~ – ~ arctan(oeiui) )1. (A4)

The second factor in this equation is equal to 1 to better

than two parts in 1017 while the increment to m/4 is no

larger than 6x 10’6 degrees for all lines. Thus,

ki = (opiai) 112e–j~lh = k/zXi (A5)

is an accurate approximation to ki where k is the free.

space wavenumber 2Tr/A, and z~i is the normalized sllr-

face impedance of the conductors (see below).
From (Al) and (A5),

Ri(hia) = Ri(me-jmj4) (A.6)

where m is the magnitude a ~=. The function on the

right side can be accurately approximated by polynomial

fitting if necessary, making its calculation quick and easy.



1322 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991

The normalized surface impedance used in (A5) is the

microwave limit of the full range surface impedance de-

rived now. The surface. impedances for the inner and

outer conductors are defined by [1]

E=(a)
.Z,l =

Ho(a)

E,(b)

‘s3 = – H@(b) “ ‘A7)

Using (16), the fields in (9) and (11), and the approxima-

tions in (33), (34), and (35) and reducing the result to

lowest order in 1/ ki leads to

“()
1/20JK2/ZZO(h.a)

“’%=-] : k; Zl(ha)

k /-L~/t-L
A–j_

kl Rl(kla)
(A8)

and

(A9)

where the first expressions after the equivalence signs are

exact and the last are approximations which are accurate

through third order in ~. In the microwave limit where

RI = – j and R3 = j, (A8) and (A9) reduce to the usual

expressions (taking PI = K3 = I-L)

k
2,3 = —

k3
(A1O)

or (A5). These are the microwave approximations used in

the literature for the “surface impedance” or the “nor-

malized surface impedance. ”
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