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Exact Principal Mode Field for a Lossy
Coaxial Line

William C. Daywitt

Abstract —Exact field equations for a lossy coaxial transmis-
sion line with an infinite outer conductor are presented. The
corresponding determinantal equation is solved to obtain an
exact propagation constant from which errors in the usual
microwave approximation and an alternative full frequency
range approximation are calculated. The calculations show that
the microwave approximation, although containing a large rela-
tive error at the lower frequencies, is still useful in practical
applications.

Keywords —coaxial transmission line; Maxwell’s equations;
principal mode; propagation constant; telegrapher equation.

I. INTRODUCTION

N exact field solution to Maxwell’s equations for a
Acoaxial transmission line has been in existence since
at least 1941 [1], but has gone unrecognized or at least
unexploited since that time. This is probably because in
1941 the means of calculation available today were nonex-
istent so the exact solution was inadvertently buried in the
need to approximate. In any case, this solution has been
recently developed and is presented in this paper.

As six-port and automatic network analyzers have be-
come more accurate and sensitive and are being utilized
at lower and lower frequencies, increasing emphasis is
placed upon accuracy of the transmission line standards
used to characterize or calibrate these systems. In particu-
lar, accurate calculation of the line’s propagation constant
acquires added importance. The approximation used at
present [1], [2] to calculate this constant, however, needs
to be reexamined below the microwave frequency region
for which it was derived since its accuracy could only be
estimated in the past from Russell’s equations [3], which
themselves are approximate. The work described here
was pursued in part to correct this situation and repre-
sents the first real check on the microwave approxima-
tion; it also suggests an alternative approximation to the
propagation constant that is more accurate and that is
applicable over the full frequency range of the line.

Russell’s 1909 paper [3], which was used [2] to estimate
the accuracy of the microwave approximation to the prop-
agation constant and the distributed line parameters, is
interesting in its own right. It discusses carly theoretical
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developments concerning the transmission of high-
frequency currents down ‘“concentric mains” (involving
the efforts of Maxwell, Heaviside, and Lord Rayleigh)
and contributes significantly to that development in addi-
tion to deriving approximations to Kelvin’s “ber,” “bei,”
“ker,” and “kei” functions that are standard today. The
approximations in Russell’s solution appear in his equa-
tions (59)-(61), where Faraday’s, Ohm’s, and an integral
form of Ampere’s law (not the exact version containing
the displacement current) are used in addition to the
approximation that the axial eléctric field is constant
across the conductors.

The establishment of impedance standards for inte-
grated circuit applications in stripline and microstrip
transmission lines is considerably more difficult than simi-
lar endeavors for coaxial lines such as the one described
here. Indeed, even an accurate description of the wave
propagation on these miniature lines is complex, and it is
useful to have at least one exact transmission line solution
against which to compare results. The fields and results to
be described below constitute one of these exact solu-
tions. :

The exact coaxial line solution is presented in the next
section, preceding which is a short review of the pertinent
theory that is included to collect the equations in one
place and because of the importance of air line standards
to precision network analyzer calibrations. A slight change
has been made in the derivation to avoid divergences
present in the usual treatment [1] as the frequency or the
conductor resistivity approaches zero.

Boundary conditions requiring continuity of the fields
tangential to the conducting surfaces are applied in Sec-
tion III to derive the determinantal eqliation, and a
simple iteration scheme to quickly find the root (which is
used to calculate the propagation constant) is presented.

Approximations are developed in Section IV, where an
expression for the root of the determinantal equation is
presented that is more accurate and applies over a wider
frequency range than the microwave version [1], [2]
presently in use. Full range, first-order fields are also
presented in that section.

A number of results are discussed in Section V, includ-
ing field graphs within and without the conductors; a
comparison of the conductor skin depths with the planar
approximation; graphs showing the accuracy of the ap-
proximations, in particular the accuracy of the propaga-
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Fig. 1. Crdss-sectional view of a coaxial trapsmission line with an

infinite outer conductor.

tion constant calculations; a comparison of the inner and
outer conductor currents; and, finally, graphs of the wave
impedance and phase velocity versus frequency. Conclu-
sions drawn from the results are presented in Section VL.

II. Exacr FiELDS

A derivation of the exact electric and magnetic fields
propagating along the axis of a coaxial line is briefly
reviewed in this section. The line (Fig. 1) is assumed to be
homogeneous and isotropic with a uniform cross section
consisting of a center conductor (region 1), a dielectric
region between the conductots (region 2), and an outer
conductor (region 3). The magnetic permeabilities, elec-
fric permittivities, and conductivities are denoted by u,,
€;, and o; in the various regions (i =1,2,3) and ¢, =0 in
the dielectric region 2. The wavenumbers are denoted by
k;, and the h; are parameters to be described later. The
coordinate system is right-handed with the directions
(7, g5, £) shown in the figure, the z direction coming out of
the paper toward the reader. The conductor resistivities
are denoted by p; (=1/0;) and will be used instead of
the conductivities when convenient.

The three regions are assumed to be source free so that
Maxwell’s equations in SI units take the form

VXE=—jouH V-B=0
VX H=(0,+jwe,)E V-E=0

(1)
(2)
where the harmonic variation e/’ is assumed. Performing
the standard vector operations [1] on (1) and (2) leads to
the Helmholtz equation
2 ; E _
[V2 +(0ue; —jopo;)] <H =0 (3)
that must be satisfied by the E and H fields.
The Laplacian in (3) is separable into transverse and

‘ longitudinalA components, corresponding respectively to
the 7 and ¢ and to the 2 directions in cylindrical coordi-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 8, AUGUST 1991

nates. Furtherthore, (3) implies that each cylindrical com-
ponent of both E and H must satisfy this Helmholtz
equation and have the form [4]

V(r,¢,z) =R(r)®(d)e™* (4)
where y is a separation constant. Inserting (4) into (3)
after expressing the Laplacian in cylindrical coordinates

produces an equation that is separable into the two equa-
tions

rZR”(r)+rR/(r)+(hfr2—n2)R(r) =0 (3)

and

() = — D). (6)

The separation constant n is chosen to be 0 since the
principal mode magnet field does not vary in the ¢
direction. The £, in (5) is another separation constant,
given by

hi=ki+y? (7
where the complex wavenumber, k;, is
ki =o’uie; = jou,o;. (3)

Solutions to (5) that are of interest are the Bessel func-
tions of the first, second, and third kinds; J,(hr), N (hr),
and H®@(hr) (Hankel function). The index » will take on
the values 0 and 1, the 1 appearing because of the
derivatives in (5) even thotgh only » = 0 is needed in (6)
to satisfy the symmetry requirement of the magnetic field
in the ql; direction.

The preceding equations are applied to each of the
three coaxial regions using a different A, (h, h,, or A3)
and k; (ky, k,, or k,) for each region. Various combina-
tions of the Bessel functions are used to satisfy boundary
conditions and generate finite fields at r =0 and r =,
leading to the following three sets of fields (the common
factor exp (jwt — yz) has been suppressed from the equa-
tions): '

Region 1 (r <a)

E, J(hyr), r<a
E, =C{hy Yy(hyr), r<a (9)
H, Y Ji(hyr), r<a
Region 2(a<r <b, h=h,)
E, Z(hr), a<r<b
E. =C hy 'Zy(hr), a<r<b (10)
H, Y,Z(hry, a<r<b
Region 3(b <)
E, H®(h,r), b<r
E, =Cythyy ' HP(hyr), b<r (11)
H, Y H(hsr), b<r.

The constants C,, C,, and C, have the units of volts per
meter but are for the present arbitrary. The constants 4,
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and £, are calculated from

b= (k2 + %) (12)

where k|, k, (with o, = 0), and k; are given by
k= (wzl“’iei_jw/“’“iaz)l/z (13)

with i =1,2,3. The wave admittances are
v, (14)
wR,y

and the propagation constant is calculated from

y=(R2—k2)"* = jl,(1-n2/k2)"% (15)

The quantity % is obtained from the determinantal equa-
tion (28) discussed in the next section.

The Z, (n=0,1) functions in (10) are defined by the
equation

Z,(hr)=GJ,(hr)+ hbN,(hr) (16)

where G is a constant determined by the boundary condi-
tions. This last definition was chosen in place of the usual
definition, Z, = J, + GN, [1], to avoid divergences in both
G and N, as h approaches 0 owing to the frequency or
the conductor losses (resistivities) approaching 0. Both
terms in (16) are well behaved in these limits, the first
term approaching 0 and the second term approaching 0 or
—2b /wr depending on whether n=0o0r n=1.

Each set of fields given by (9), (10), and (11) satisfies
Maxwell’s equations identically, as can be seen by substi-
tution into (1) and (2), using the Bessel function recursion
relations to reduce the resulting terms containing n =2 to
combinations of terms containing only n=0 or n=1.

The boundary conditions require the continuity of E,
and /1, at r =a,b, and yield the following field expres-
sions Wthh are obtamed from the fields in (9)-(11) by
solving the boundary conditions for C, and C; in terms of
C, and using (14) for the wave admittances:

Region 1:

,qu,% Ji(hyr)
E=C Z.(ha e 17
2k A T ) 0
h Jo(hy )
E, = Z 18
0( )J()(hl ) ( )
H¢ =Y, E,. (19)
Region 2:
E . =C,Z/(hr)e ™ (20)
E,=C,—Zy(hr)e * (21
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Region 3:
N«skz H(Z)( 3r ) '
Er—cz 3 (hb) H(z)(h b) (23)‘
h HP(hsr)
EZ = CZJZO(hb) E‘(’Z‘)(TB_)‘ (24)?
H,=Y;E, (25)

Magnetic losses within the conductors and dielectric losses
between the conductors can be included by using a com-
plex wq, ps, and k.

The field expressions (17)—-(25) formally satlsfy both
Maxwell’s equations and the boundary conditions exactly,
but the value of 4 must still be determined in order to
calculate the propagation constant y and complex fields.
This is accomplished in the next section.

II1. DETERMINANTAL EQUATION

Calculation of the constant /4 is necessary to utilize the
field equations of the last section. It is obtained, like the
C, constants, by applying boundary conditions at r =a
and r = b. The resulting equation from which A is deter-
mined and a simple means of solving that equation are
described in this section.

Two expressions containing the constants C; and C,
are obtained by requiring continuity in E, and H, at the
boundary r = a (see (9)~(11)). Eliminating these constants
between the two expressions yields

Zy(ha) 3 pikih,Jo(hia) (26)
Z,(ha)  p,kihl(hia)

A similar equation is obtained by requiring continuity
at r =b:

Zo(hb) ,U«3k%h3H(§2)(h3b) 7
Z(b) ~ pakdhP(y) )
Both (26) and (27) contain the constant G implicitly in

their respective Z,’s, each yielding an equation for G
when the Z,’s are replaced by their equivalents in (16):
w5 'kZhbN (ha) — (uf1kf/h1)h2bR1(h1a)N0(ha)
(n7'kE /hy)hRy(hya)Jo(ha) — wy k3T (ha)
w5 ‘k2hbN,(hb) — (p,glkz/h3)h2bR3(h b)N,(hb)
(k3 %3 /3)hRs(h3b) Jo(hb) — w3 'K3T,(hb)
(28)

where
hsb HP(hsb)
3( ) H(Z)( h b)
(29)
The last equality in (28) is the determinantal equation
from which the root 4 is extracted. There are actually an
infinity of roots: the root with magnitude close to 0 which

is the desired k& of the principal mode; and an infinite
number of other roots with nonzero magnitudes that

Ji(hia)

Folhe)= Jo(hya)
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belong to the symmetric TM waveguide modes [1], [5],
which are of no interest in the present work.

A simple and rapidly convergent iteration scheme for
finding the root % of (28) can be obtained with the
following seven steps:

1) make an initial estimate for 4 using (32) in (35);

2) calculate k, and h; from the results of step 1 and
(12); :

3) calculate R,(h;a) and R,(h;b) from the results of
step 2 and (29);

4) calculate the right and left sides of the second
equality in (28) from the results in steps 1, 2, and 3;

5) calculate the difference 8G between the calcula-
tions in step 4 and the correction to /4 using

-1

; (30)

L, _mG[ b K 1 1
= e —-+—- - —
26 |V a TR \kaR,  k,bR,

6) add the correction 84 to the A estimated in step 1;
7) finally, iterate steps 2 through 6 until the desired
accuracy in 4 is achieved.

Three iterations are sufficient to produce an A accurate
to approximately 14 significant figures for the numerical
example in Section V. The formula in (30) was obtained
by differentiating the difference between the two $ides of
the last equation in (31) with respect to 4 (note that the
logarithm of 4 cancels when taking the difference).

Once # is found, &, and A, can be calculated from (12)
after the propagation constant vy is calculated from (15).

IV. APPROXIMATIONS

The exact expressions found in the previous two sec-
tions are inconvenient to use in many practical applica-
tions because of the effort and time required for their
calculation, so accurate approximations are often neces-
sary. Some of the more important approximations are
presented in this section. .

The following two approximations (G) for G can be
obtained by dropping the k% terms in the denominators
of (28):

~ 2hb 2 k3

6= - B2
s cha  p,kh*aR,
2hb 2 wsk?

(31)

— I —_—— ——
™ (nchb 1,k sh?bR,

where ¢ = exp(0.5772156649 - - - ) and 0.5772156649 - - - is
Euler’s constant; where

R, =R (k;a) Ry = R;(k;b) (32)

and where the following approximations have been made
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for small z(= hr):
Jo(z)=1-2%/4

J(2)=2z/2 (33)
2 2 z?
]VO(Z)é —;([1‘1 C—Z‘JO(Z)"‘T)
2(1 z 2 =z
Nl(Z)é‘;(—Z—-i-ElnE'}‘Z). (34)

After making the substitutions (32)-(34) it is necessary to
examine the magnitude of each of the resulting terms,
discarding those which are insignificant compared with
the rest, to arrive at (31). Equation (31) corresponds to
Stratton’s equation (39) on page 551 of [1]. .

Solving (31) for & yields the following approximation A:

E{ _ M /kaRy ~ py / k3bR;
k3 poIn(b/a)

which can be substituted back into (31) for % to obtain G.
This approximation will apply over the full frequency
range of the transmission line and is Stratton’s equation
(40) on page 552 of [1] (Stratton’s A corresponds to the 4
used in the present paper). It is seen to contain k; and &,
explicitly and implicitly via the functions R, and R, the
latter preventing (35) from being a simple proportion in
1/k, and 1/k,. In contrast to (35), substituting

(35)

Ry=-j Ry=j (36)
leads to the usual, microwave approximation %,:
hZ  j(wy /kia+ps kb
0 _ ( 1/ 1 3/ 3 ) (37)

Eg o In(b/a)

where if k, = k;, then A is proportional to the reciprocal
of k; or the normalized surface impedance of the conduc-
tors (see (A5)). This approximation gives good accuracy
only at the upper, microwave end of the line’s frequency
range. This is the solution that has survived since 1941
and that is in common usage today [1]. The positive
square roots in (35) and (37) are taken when 4 and A, are
required.

Equation (31) is a “small A” approximation to G
whereas the corresponding microwave expression is a
first-order approximation in the metallic surface
impedance of the conductors, approximating R, and R,
(36) in addition to the approximations (33) and (34). This
distinction is what makes the newer approximations full
frequency range approximations, i.e., usable and accurate
from 0 Hz to the upper usable frequency of the transmis-
sion line (e.g. 18 GHz for the 7 mm, 50 Q line).

The approximate full range propagation constant ¥ is
obtained by using (35) in the second expression of (15):

9= jko(1—h%/2k3). (38)

This result permits the line loss and phase shift to be
accurately calculated over the full frequency range of the
line once R, and R; are determined (see the Appendix).
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Region 2 Fields

With C,=—1/2, the following approximations to
(20)-(22) can be derived:

b(1+re, X
g =llrre)

r : (39)
g2 (re _ ,;z,z)e 42 (40)
© Yoot T4
and
H¢=YzoE 1+§,3+re e (41)
r Yy ’
where
2l b1 In(b/a
re,=— In r * 2 1- I-L1k3b(R3//123k1aR1 ) 2
¥ = Yoo + 8y (43)
k,
Yoo = Jk; L “
Wl
and
Sy dY, h*
;0_0 _ ?; _ 5;:; (45)

The fields given by (39)-(41) are complete solutions to
first order in the squared quantity 42 in the sense that, if
substituted into Maxwell’s equations (1) and (2) with the
results reduced to first order, they satisfy those equations
identically. They are related to the corresponding equa-
tions in [5], which are complete microwave solutions to
first order in the surface impedance. The significant dif-
ference is the appearance of R, and R; in place of —j
and j in the earlier definition of re, in [5].

V. NuMERICcAL RESULTS

The theoretical results of the previous three sections
are illustrated in this section by numerical examples cal-
culated for a 7 mm, 50 ) line. The line is assumed to
have a resistivity of 2 p{)-cm, corresponding to equal
inner and outer conductor conductivities (a;, 03) of 5x 107
S/m, a value that is roughly representative of copper,
sitver, and gold. The other constitutive parameters that
were used for the calculations are o, =0, u;=p,=p;=
W, and €; =€, = €5 = ¢,. Results for other line sizes are
simifar to the ones shown below.

A. Fields, h, Skin Depths

The magnetic field described by (19), (22), and (25) is
plotted in Fig. 2 for various frequencies as a function of
the 1adius r. The magnitude is normalized by its maxi-
mum value at r = a and the radius by the inner conductor
radius a. The fields between r=a and r=0>b at the
various frequencies differ a small amount because of
conductor loss, but the vertical scale of the graph is too
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Fig. 2. Graph of the normalized magnetic field as a function of the
normalized radius for various frequencies.

10

E,(r)
Ez(a)

Fig. 3. Graph of the normalized longitudinal electric field as a func-
tion of the normalized radius for various frequencies.

coarse to show this effect. The 1 Hz line is close to the
direct current case, exhibiting a linear falloff in the center
conductor and a 1/r falloff in the outer conductor. The
dashed levels at 1/¢ and 0.434/e will be used later in
discussing the skin depth.

Fig. 3 is a graph of the longitudinal electric field (E,)
magnitude as a function of r for various frequencies. It is
interesting to note that the magnitude does not vanish
between the conductors, a feature that is evident in the
approximate equation (40) also. The local minima, how-
ever, are seen to approach 0 at r =179 (a value easily
derived from (40)) as the frequency is increased.

Fig. 4 is a graph of the phase angle of E, between the
conductors. The phase remains relatively constant with
frequency until a transition region around 1.79 is reached,
at which point it abruptly changes by approximately 180°.
This phase reversal is sufficient to ensure that there is a
positive average Poynting flux into the conductors at both
r=a and r = b, accounting for the inner and outer con-
ductor losses.
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Fig. 4. Graph of the phase of the normalized longitudinal electric field
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a

179
r

as a function of the normalized radius for various frequencies.

TABLE 1
CONVERGENCE OF THE PARAMETER /1 AT 18 GHz
Re(h) Im(h)
0.0297441614416505 0.0718037438397921
0.0297448538545143 0.0718040306557353
0.0297448539891355 0.0718040305999745
0.0297448539891461 0.0718040305999490
0.0297448539891461 0.0718040305999490

Calculated using #; =k, and h;= k.

100 =TT T T T T T T T T 7]
& =
— /s
10= o@/:a,\ _
:—\ Uer =
=—b \\‘\ -
,E\ O‘I%—“a Inner \\ ]
= T E N =
“ — \ -]
— ~_
001§ if
— ]
T 1 O 1 1 I R
1Hz 1KHz 1 MHz
Frequency

Fig. 5. Graph of the skin depths as a function of frequency.

Table I illustrates the rapidity with which the iteration
scheme for finding the root 4 of the determinantal equa-
tion discussed in Section III converges. The real and
imaginary parts of 2 shown in the first row are the
equation (35) estimates. The convergence is seen to be 15
significant figures in three iterations.

The skin depth is defined as that distance into the
conductors at which the magnitudes of H, or E, fall to
1/e (see the dashed levels in Fig. 2) of their respective
values at the surface of the conductors. It is generally
different for the two conductors, but this difference is not
significant in the microwave frequency region of the line.
Fig. 5 shows the skin depth as a function of frequency and
includes the usual microwave or planar approximation [6]
in addition to the inner and outer conductor skin depths.

10 T T

«—Microwave” Region—»|

[Ry]
[Ry| =|Rs| 2

—_

1 MHz
Frequency

1GHz

Fig. 6. Graph of the magnitude of R, and R; as a function of
frequency.

90

80

—70

«—Microwave" Region —»

-4,z 4,200 7
— 60
9, Ny
_90% —1
O T A A
1Hz 1KHz 1MHz 1GHz
Freguency

Fig. 7. Graph of the phase of R; and R as a function of frequency.

The outer conductor skin depth is generally less than the
planar approximation because the fields are spreading out
as r increases so it requires a shorter distance for the 1 /e
falloff to occur. An opposite effect holds for the inner
conductor until a crossover at approximately 7 kHz. The
crossover and the fact that both inner and outer conduc-
tor skin depths become constant as the frequency de-
creases can be seen by examining Fig. 2, an exercise left
to the reader.

B. Approximations

The microwave and full range approximations differ by
the R, = —j and R, = j approximations used in deriving
the former. Figs. 6 and 7 are graphs of the magnitudes
and angles of R; and R; as a function of frequency. They
show that the magnitudes begin to diverge from their
microwave approximations at about 1 MHz and the angles
begin to diverge somewhere between 1 and 10 MHz.
Thus, for a 7 mm line the microwave approximations start
to fail as the frequency drops below about 1 MHz. Using
this 1 MHz cutoff point for the argument of (A6) leads to
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Fig. 8. Graph of y and the errors in 4 and vy, as a function of

frequency.

the rule-of-thumb relation f=(0.15/a)* (a in cm and f
in MHz) as the point where failure begins for any line of
inner conductor radius a. For example; a 3.5 mm line
starts at 4 MHz.

Fig. 8 shows the errors using the microwave (y,) and
full range () approximations to the line loss per unit
length and the phase angle per unit length as a function
of frequency. The line loss errors, 8.68 (Re y, —Rey) and
8.68 (Re 7 —Rey), are in units of dB/cm; and the angle
errors, Imy, —Imy and Im$ ~Imvy, are in units of de-
grees /cm. The errors in the full range approximations are
multiplied by a factor of 10° to bring them up onto the
scale of the graph. The absolute loss and angle calculated
from the exact y are also shown for comparison. The
sharp dip in the vy, curve is due to a change of sign in that
error. The errors at 18 GHz are 6.2X1077 dB/cm and

82%10"! deg/cm for y, and 1.3x1077 dB/cm and.

3.8% 1072 deg/cm for 9. It is clear from the graph that
the full range errors sharply decrease as the frequency
decreases, while the microwave errors become increas-
ingly significant.

The dotted y curves in Fig. 8 also show how the real
and imaginary parts of the propagation constant vary in
the limits of high and low frequencies. The curves are
linear in these limits, indicating a power law dependence
with frequency for both real and. imaginary components.
In the high-frequency limit the phase angle varies linearly
with frequency while the loss component varies as the
square root of the frequency. In the low- frequency limit
both components vary as the square root of the frequency.
These results can be compared with [7, fig. 5.19] and
explain how both a and B approach zero in that figure.

The error in the full range approximations of the fields
in region 2 is greatest at the highest usable line frequency.
Table II shows a comparison between the exact and
approximate field values for a radius of 1. 5a and a fre-
quency of 18 GHz. (The magnitudes have arbitrary units
and the phases are in units of degrees, while the magni-
tude error is a relative error and the phase error has the
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units of degrees.) The errors decrease rapidly as the
frequency decreases.

C. Conductor Currents

It proves interesting to calculate the total conductor
currents since we are now in possession of the exact
fields. The first equation in (2) takes the form

J=V X H - joeE (46)

when oE is repiaced by the current density within the
conductors. Using (46) and the Bessel function recursion
relations, it is straightforward to show that the currents in
the center and outer tonductors are

2 8-
=[7[Jas
0 0
ha :
=277-(1H¢(a)—27jwel7Z0(ha)Rl(h1a) (47)
BAL ~

and

=/ des

hb
= —2mbH ,(b) +2ij63;E—ZO(hb)R3(h3b) (48)
R
respectively. Simpler expressions for the currents can be
obtained by performing the integrations again with J ok
in place of (46), leading to

2mac E,(a)R,(ha
_ Zman o) Ry (ha) )
hy
and
2abo. E (bYR(hsb
o ITPREDRGD)
3

which can be used to simplify the sécond terms of (47)
and (48). Inserting (49) into (47) for R, /h, and (50) into
(48) for R,/ hj gives

2maH 4(a) 2wbH 4(b) 51
1_1—!—jw61/0’1 3T 1+ jwes /o, (1)
and
! bH (D) [ 1+ jwe, /o
_ ¢( ) , ]. 1/ 01 . (52)
I aHy(a) \ 1+ jwes /o3
Equation (52) becomes
I bH (b
L_ _bH®) (53)
I1 aHd,(a)

for similar inner and outer conductors where €, = €5 and
0y =03.

The effect of the displacement current (the denomina-
tors in (51)) on the total conductor current is to slightly
decrease the magnitude of their magnetically (H field)
induced components (the numerators of (51)) and to
retard their phases. The ratio in (52) shows that the
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TABLE II
Accuracy oF THE FIrsT ORDER FuLL RaNGe FIELDS AT 1 /a = 1.5 FOR 18 GHz
Magnitude Phase
Magnitude Phase Error Error
Exact E, 9.77194E-1 —179.996
. Approx E, 9.77194E-1 —179.996 1.3E-12 3.7E-7
Exact E, 6.28027E-5 —134.998
Approx E, 6.28063E-5 —135.001 5.8E-5 —3.4E-3
Exact H, 2.59349E-3 -179.987
Approx H, 2.59439E-3 —179.987 9.8E-12 5.3E-6
Calculated using 2, = k| and k3= k;.
3 105 102
SN ¢ .
S w
C N :
104 E 10
= |Zw] 1
E 1 ®
£
S 103 N \ 41 =
—_— = s =
: F SN~—— 4 <
N - \ = 1
102 \ {107
, 10 | 1072
1 ) 179 b/a 1Hz 1kHz 1MHz 1 GHz
Frequency
r/a

Fig. 9. Graph of the deviation from unity of the magnitude of the

normalized magnetic field as a function of frequency.

TABLE 11
Tue Ratio |1, /I aT Various FREQUENCIES

Frequency 1 /1)

18 GHz 1.00001137475840

10 GHz 1.00000471012008

1GHz 1.00000014894653
100 MHz 1.00000000471004

1 MHz 1.00000000000470

1 kHz 1.00000000000000

Calculated using 4, = k,.

currents are not in general equal; this is true even when
the conductors are made of identical materials since the
magnitude of the ratio in (53) is still not unity because of
conductor losses. In the case of vanishingly small losses
(p = 0 or ¢ =), however, both sets of equations, (52) and
(53), result in I, = — I,.

Fig. 9 illustrates how the magnitude of the field ratio in
(53) diverges from unity. This variation is due exclusively
to conductor loss since the conductors are assumed to be
constructed of the same material for the calculation. The
magnitude of the ratio in (53) corresponds to the circled
points at the right in the figure for the various frequencies
indicated. Examination of these points reveals that the
ratio is equal to 1 to within 12 parts per million (ppm) at
18 GHz, 5 ppm at 10 GHz, and 0.5 ppm at 2 GHz,
showing that the current ratio rapidly approaches unity as
the frequency decreases. Table Il also shows this effect.

Graph of the magnitude and phase of the wave impedance
between the conductors as a function of frequency.

Fig. 10.

D. Wave Impedance, Phase Velocity

The wave impedance between the conductors is ob-
tained by reciprocating (14) with i = 2: '

1,2
_opyY a)/.LZ(l— hz/kg)
jk3 ks

Z,=

= (12 /€)' (1= n?/k2)"" (54)

where (15) has been used to obtain the second expression.
Fig. 10 is a graph of the magnitude and phase of this
impedance. It is interesting to note that the magnitude is
not equal to the free-space impedance (377 ) at all
frequences, decreasing from a value of approximately
20000 © at 1 Hz to the free-space value between 1 kHz
and 1 MHz. Equally interesting is the phase of Z,. The
magnitude continues to increase as f /? as the fre-
quency decreases while the phase levels out at a negative
45°, The increase in magnitude is due to the fact that the
magnitude of the radial electric field remains constant
with frequency while the magnetic field magnitude falls
off as f1/2, ‘

The variation with frequency seen in Fig. 10 vanishes as
it should when the line loss disappears, the remaining
constant value being the free-space impedance yu /e
with zero phase. ‘
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Fig. 11 is a graph of the phase velocity
@

" Im(y)

of the principal wave as a function of frequency. The f!/2
falloff disappears as the line loss vanishes.

(55)

VI. CoNCLUSIONS

An exact solution to Maxwell’s equations describing the
propagation of the principal mode in a lossy coaxial
transmission line has been presented along with a scheme
for finding the principal root s of the determinantal
equation and the exact propagation constant y.

Being able to calculate the exact y provides the first
real check on the accuracy of the microwave and full
range approximations to the propagation constant. The ¥
curves in fig. 8 show that the full range approximation is
highly accurate over the entire usable frequency range of
the line while the microwave approximation suffers a
large relative error at frequencies below about 1 MHz. It
should be noted, however, that the vy, loss and angle
error curves show absolute errors less than’ 2%1076
dB/cm and 10~ & deg/cm respectively at these lower
frequencies, values that may be suff1c1ent1y small for most
practical purposes even though the relative errors are
large.

Approximate expressions for the fields between the
conductors were presented that satisfy Maxwell’s equa-
tions to first order in 42, The errors in these expressmns
are shown in Table II. '

It is often assumed that the principal mode wave

impedance for the ficlds between the conductors is equal
to the free-space value /u /€. Fig. 10 shows that this
assumption is significantly in error below approx1mately 1
MHz when the line is lossy.

APPENDIX
APPROXIMATIONS FOR R,(h;a) aND R3(h3b),
SURFACE IMPEDANCE

The approximations (i =1, 3, and r = a,b)
Ri(h;r) = R(k;r)

are sufficiently accurate to be used without concern, and
make calculations like (37) easier because the right side of
(A1) does not depend on the solution h of the determi-
nantal equation (28). The corresponding error from re-
placing h; with k; will be discussed first and then the
surface impedance.,

From (12), ,
2\ 172
h[ = ki(l-{— 7—)

and calculations Show (see Fig. 12) that the second factor
on the right is equal to 1 to better than six parts in 10°.
Thus, for practical purposes,

h;=k,.

(Al)

(A2)

(A3)

~ 102 : |
g} E‘ IHlHﬂﬂIHW‘ T THT mmm [T T Hl%
§ L — -
3
e 10k / =
< =
= ¢ -
§ 1 i —
o — =
> — -
o] — ]
o)
3 | .
o g l
1Hz 1kHz 1 MHz 1GHz
Frequency
Fig. 11. Graph of the phase velocity as a function of frequency.
1078 HHHHHHFH“ TTTT mumﬂm T T
10° —f
1070 / ;:
R — / _
N ~ / =
W 102 o =
107 , / :
- ‘ ; / -
- (ot oo ol v ol 1
1Hz 1kHz 1 MHz 1GHz
" Frequency
Fig. 12. v Graph of y? /2k.,«2 as a function of frequency.
From (13),

12 1/4
ki=(op,0)*(1+ v’} /o)

a 1
~exp[— ](Z 5 arctan(weio;))}. (A4)
The second factor in this equation is equal to 1 to better
than two parts in 10*7 while the increment to /4 is no
larger than 6 10~° degrees for all lines. Thus,

k;= (a’IJ’iUi) 2gmim/4 - k/z (AS)

is an accurate approximation to k; where k is the free-
space wavenumber 27 /A and z; is the normalized sur-
face impedance of the conductors (se¢ helow).

From (Al) and (AS),

R,(h;a) = R,(me/"/4) (A6)

where m is the magnitude ay/wu,0;. The function on the
right side can be accurately approximated by polynomial
fitting if necessary, making its-calculation quick and easy.
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The normalized surface impedance used in (A5) is the
microwave limit of the full range surface impedance de-
rived now. The surface. impedances for the inner and
outer conductors are defined by [1]

E.(a) _
H¢(6l) S ~s3 T

E.(b)
Hy(b)

i

Z, (A7)
Using (16), the fields in (9) and (11), and the approxima-
tions in (33), (34), and (35) and reducing the result to
lowest order in 1/k,; leads to

: Zg ( € )1/20’M2h Zo(ha)
Zg=—F——==~J[— R
! Vu /€ 2 k3 Z,(ha)
ko wy/n
e e (A8)
ki R\(k,a)
and
Zss .(5)1/20’:“«2}1 Zﬁ(hb) Lk s/
Z oy = e = — S
e Vwse Nwl TR Zymby Tk Ry(kob)

(A9)

where the first expressions after the equivalence signs are
exact and the last are approximations which are accurate
through third order in 4. In the microwave limit where
Ry=—j and R;=j, (A8) and (A9) reduce to the usual
expressions (taking u, = u; = u)

(A10)

Za=7" Zg3

ks

or (AS). These are the microwave approximations used in
the literature for the “surface impedance” or the “nor-
malized surface impedance.”
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